Skip to content

Bad, boring or bonkers? Science and policy making

18 April 2012
by Patrick Love

Ahoy there, matey. How can we help?

France fought to get the “exception culturelle” recognised by the GATT,  the forerunner of the World Trade Organization, in particular to protect its own cinema against Hollywood. So it’s all the weirder that French movie distributors insist on translating titles from English into er, English. Wild Things, for instance, becomes Sex Crimes. It’s even weirder when the original uses a word of French origin in the title. Triage with Colin Farrell becomes, for French audiences, Eyes of War. However, the French are not alone, as I learned on reading this article by Quentin Cooper on the BBC website. Quentin wonders why the latest Aardman film The Pirates! In an Adventure with Scientists has been rebranded as The Pirates! Band of Misfits in the US.

The quick answer is that to many people, the subtitles are synonymous, and this isn’t surprising given the way science and scientists are often presented. You either get a man in a white lab coat staring intelligently at some exotic glassware full of scientific-looking liquid, or a wild-haired eccentric solving mile-long equations but incapable of posting a letter.

Scientific issues are regularly sensationalised, trivialised, or misunderstood by the media, with basically three types of story: breakthrough, silly or scare. Scare stories give a poor image of science, reinforcing the stereotype of the mad scientist whose research is dangerous for human health or the environment, with “Frankenstein” being used to label practically any product of genetic research for instance, even ants.

Trivia such as the scientific formula for how to make toast or write a sitcom present scientists as eccentrics and their research as futile.

Breakthrough stories give an image that is positive, but just as inaccurate as scares and trivia, ignoring the way ideas and intuitions emerge, are formulated as hypotheses and then tested, vindicated, revised or rejected over a period of time. Look at any health breakthrough article and if the full story is given, chances are that the researchers have come up with something that will take years to influence treatment, if it ever does.

At the same time, scientists must take their share of the blame too. Ananyo Bhattacharya, chief online editor of Nature argues here that if reporters wrote stories the way some scientists seem to want, few people would read science coverage. Both sides have to make an effort because an understanding of science and technology is necessary not only for those whose career depends on it directly, but also for any citizen who wishes to make informed choices about controversial issues ranging from stem cell research to global warming to genetically modified organisms to teaching the theory of evolution in schools. And new issues are bound to emerge in the years to come.

But could science do more than provide the knowledge needed to understand natural processes? A symposium organised by the Global Science Forum (GSF) at the OECD today explores new science-based tools for anticipating and responding to global crises. The premise is that new types of scientific inquiry, and new modes of science-policy interactions, are emerging based on the ability of researchers to analyse and to make reliable forecasts about policy-relevant phenomena that have, until now, been seen as lying outside the scope of useful scientific analysis.

Typically, these are systems and networks consisting of vast numbers of individual elements that interact in complicated ways, such as ecosystems, financial markets, energy networks, or societal phenomena such as urbanisation and migration.

In one sense, the symposium will simply be trying to bring policy makers up to date with developments since the last time they adopted a new set of scientific tools in the 19th century. The social sciences that now form a natural part of government decision making were only emerging, and borrowed much of their metaphors and terminology from the existing sciences, especially physics.

We still talk about flows, masses, equilibrium and so on (there’s actually something called a “gravity model” of trade, for example). But these terms are rooted in “classical” physics, developed before relativity and quantum theory. The GSF has been working for several years now to show how the new sciences of complexity can provide insights into systems that operate not just as series of actions and reactions, but with feedback, non-linearity, tipping points, singularities and so on.

We’ll report back on tools for anticipating and responding to global crises once the summary of today’s symposium is available. In the meantime, we laugh in the face of danger!

Useful links

Global Science Forum:  “Applications of Complexity Science For Public Policy: New Tools for Finding Unanticipated Consequences and Unrealized Opportunities

Future Global Shocks: Improving Risk Govenance

The symposium marks the 20th anniversary of the Global Science Forum and the 100th meeting of the OECD Committee for Scientific and Technological Policy

One Response leave one →
  1. April 23, 2012

    Thanks for the article and thanks for showing me: “gravity model” very useful for me.

Leave a Reply

Note: You can use basic XHTML in your comments. Your email address will never be published.

Subscribe to this comment feed via RSS

Follow

Get every new post delivered to your Inbox

Join other followers: